Effects of tillage systems on soil biodiversity

Authors

  • Ghasem Hosein Talaei Ph.D student of agroecology, department of crop production and plant breeding, Faculty of agriculture, Zabol University, Zabol, Iran
  • Ahmad Gholamalizadeh Ahangar Department of Soil Sciences, Faculty of Soil and Water Engineering, University of Zabol, Zabol, IR Iran

Keywords:

Tillage;Soil structure;Organic matter

Abstract

Tillage affects the soil physical and chemical environment in which soil microorganisms live, thereby affecting their number, diversity and activity. Conservation tillage (CT) is practiced on 45 million ha world-wide, predominantly in North and South America but its uptake is also increasing in South Africa, Australia and other semi-arid areas of the world. It is primarily used as a means to protect soils from erosion and compaction, to conserve moisture and reduce production costs. In Europe, the area cultivated using minimum tillage is increasing primarily in an effort to reduce production costs, but also as a way of preventing soil erosion and retain soil moisture. Conservation tillage can improve soil structure and stability thereby facilitating better drainage and water holding capacity that reduces the extremes of waterlogging and drought. These improvements to soil structure also reduce the risk of runoff and pollution of surface waters with sediment, pesticides and nutrients. Reducing the intensity of soil cultivation lowers energy consumption and the emission of carbon dioxide, while carbon sequestration is raised though the increase in soil organic matter (SOM). Tillage-driven impacts on lumbricids and collembolans differed depending on soil texture, whereas those on nematodes and microbial communities varied depending on soil depth. Functional groups within certain taxa show differing tillage induced impacts. Linking several datasets on various indicator organisms clearly show that the decision on which tillage system should be applied must be taken for each individual case considering local soil characteristics.

References

El, T., 2003. Effects of tillage on invertebrates in soil ecosystems, in: A. El Titi (Ed.), Soil Tillage in Agroecosystems, CRC Press, Boca Raton, FL, USA., pp. 261e296.

Reinecke, J., Visser, F.A., 1980. The influence of agricultural land use practices on the population density of Allolobophora trapezoides and Eisenia rosea (Oligo chaeta) in Southern Africa, in: D. L. Dindal (Ed.), Soil Biology as Related to Land Use Practices, EPA, and Washington, DC., pp. 310e324.

Temme, J.A.M., Verburg, P.H., 2011. Mapping and modelling of changes in agricultural intensity in Europe, Agric. Eco. Env.,140. 46e56.

Kassam, T., Friedrich, R., Derpsch., 2010. Conservation agriculture in the 21st century: a paradigm of sustainable agriculture, Eur. Congr. Conser. Agr., October. Madrid.

Kassam, T., Friedrich, F., Shaxson, J., Pretty., 2009. The spread of conservation agriculture: justification, sustainability and uptake, Int. J. Agric. Sust., 7. 292e320.

Zicsi., 1969. Über die Auswirkung der Nachfrucht und Bodenbearbeitung auf die Aktivität der Regenwürmer. Pedob., 9. 141e145.

Stewart, A., 2007. Water Conservation and Water Use Efficiency in Dry lands Proceedings of the International Workshop on Conservation Agriculture for Sustainable Land Management to Improve the Livelihood of People in Dry Areas, ACSAD, Damascus, Syria, 7e9 May., pp. 57e66.

Genckiser, B., 1997. Organic inputs and soil metabolism. In: Benckiser, G. (Ed.), Fauna in Soil Ecosystems. Marcel Dekker, New York., pp. 7–62.

Friebe, V., Bräutigam, W., Gruber, W., Henke, F., 1991. Tebrügge, Auswirkungen reduzierter Bodenbearbeitung auf biologische und physikalische Parameter von Ackerböden, Verh. Ges., Ökol 20. 29e39.

Doube, M., Schmidt, O., 1997. Can the abundance or activity of soil macrofauna be used to indicate the biological health of soils? In: C. Pankhurst, B.M. Doube, V.V.S.R. Gupta (Eds.), Biolog. Ind. Soil Health., pp. 265e295.

Edwards, A., Lofty, J.R., 1969. The influence of agricultural practice on soil microarthropod populations, in: J. G. Sheals (Ed.), The Soil Ecosystem, Ecological Bulletin, vol. 26. System. Assoc. Publ., Stockholm. pp. 237e247.

Gardi, L., Montanarella, D., Arrouays, A., Bispo, P., Lemonceau, C., Jolivet, C., Mulder, L., Ranjard, J., Römbke, M., Rutgers, C., Menta., 2009. Soil biodiversity monitoring in Europe: ongoing activities and challenges, Eur. J. Soil Biol., 60. 807e819.

Pelosi, M., Bertrand, J., Roger-Estrade., 2009. Earthworm community in conventional, organic and direct seeding with living mulch cropping systems, Agron. Sustain. Dev., 29. 287e295.

Lopez, F., Bello, A., 1995. Variability in soil nematode populations due to tillage and crop rotation in semi-arid Mediterranean agrosystems, Soil Till. Res., 36. 59e72.

Wardle, A., 1995. Impacts of disturbance on detritus food webs in agroecosystems of contrasting tillage and weed management practices, in: M. Begon (Ed.), Advances in Ecological Research, vol. 26, Academic Press, New York., pp. 105e185.

Huggins, R., Reganold, J.P., 2008. No-till: the quiet revolution. Sci. Am., 299. 70e77.

Hooper M., Chapin III, U., Ewel, F.S., Hector, J.J., Inchausti, A., Lavorel, P., Lawton, S.. Lodge, J.H., Loreau D.M., Naeem, S., Schmid, B., Setala, H., Symstad, A.J., Vandermeer, J., Wardle, D.A., 2005. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge, Ecol. Monogr., 75. 3e35.

Freckman, W., 1988. Bacteriovorous nematodes and organic matter decomposition, Agric. Ecosystem. Environ., 24. 195.

Price, W., Benham Jr, G.S., 1977. Vertical distribution of soil inhabiting micro arthropods in an agricultural habitat in California USA, Environ. Entomol., 6. 575e580.

Barrios., 2007. Soil biota, ecosystem services and land productivity, Ecol. Econ., 64. 269e285.

Bulte, A., Hector., Larigauderie, A., 2005. Eco SERVICES: assessing the impacts of biodiversity changes on ecosystem functioning and services, DIVERSITAS., Report No. 3.

Hangen, U., Buczko, O., Bens, J., Brunotte, R.F., Hüttl., 2002. Infiltration patterns into two soils under conventional and conservation tillage: influence of the spatial distribution of plant root structures and soil animal activity, Soil Till. Res., 63. 181e186.

FAO (Food and Agriculture Organiszation)., 2000. manual on integrated soil management and conservation practices, in: FAO Land and Water Bulletin, vol. 8, FAO, Rome., p. 214.

Basch, J., Geraghty, B., Stret, W.G., Sturny., 2008. No-tillage in Europe estate of the art: constraints and perspective, in: T. Goddard, M.A. Zoebisch, Y.T. Gan, W. Ellis, A. Watson, S. Sombatpanit (Eds.), No-till Farming Systems, World Association of Soil and Water Conservation, WASWC, Bangkok. pp. 159e168 Spec. Publ., No. 3.

Yeates, W., Bongers, T., 1999. Nematode diversity in agroecosystems, Agric. Ecosystem. Environ., 74. 113e135.

Holland, J.M., 2002. Integrated farming systems. In: Pimentel, D. (Ed.), Encyclopedia of Pest Management. Marcel Dekker, New York., pp. 410–412.

Petersen., 2002. Effects of non-inverting deep tillage vs. conventional ploughing on collembolan populations in an organic wheat field, Eur. J. Soil Biol., 38. 177e180.

Kaya, K., Gaugler, R., Entomopathogenic nematodes., 1993. Annu. Rev. Entomol., 38. 181e200.

Wall work, A., 1976. The Distribution and Diversity of Soil Fauna, Academic Press, London/New York/San Francisco.

Lampurlanés, P., Angás, C., Cantero-Martínez., 2001. Root growth, soil water content and yield of barley under different tillage systems on two soils in semiarid conditions, Field Crop. Res., 69. 27e40.

Lagerlöf, J., Andren, O., Paustian, K., 1989. Dynamics and contribution to carbon flows of enchytraeidae (Oligochaeta) under four cropping systems, J. Appl. Ecol., 26. 183e199.

Graine, J.M., Froehle, J., Tilman, D.G., Wedin, D.A., Chapin, F.S., 2001. The relationships among root and leaf traits of 76 grassland species and relative abundance along fertility and disturbance gradient, Oikos., 93. 274e285.

Holland, J.M., 2004. The environmental consequences of adopting conservation tillage in Europe: reviewing the evidence, Agric. Ecosyst. Environ., 103. 1e25.

Pretty, J., 2008. Agricultural sustainability: concepts, principles and evidence, Philos. T. Roy. Soc. B 363 (1491). 447e466.

Roger-Estrade, J., Anger, C., Bertrand, M., Richard, G., 2010. Tillage and soil ecology: partners for sustainable agriculture, Soil Till. Res., 111. 33e40.

Kasprzak., 1982. Review of enchytraeid (Oligochaeta, Enchytraeidae) community structure and function in agricultural ecosystems, Pedob., 23. 217e232.

Giller, K.E., Bignell, D., Lavelle, P., Swift, M.J., Barrios, E., Moreira, F., van Noordwijk, M., Barois, I., Karanja, N., Huising, J., 2005. Soil biodiversity in rapidly changing tropical landscapes: scaling down and scaling up, in: R. Bardgett, M.B. Usher, D.W. Hopkins (Eds.), Biological Diversity and Function in Soils, Cambridge University Press, Cambridge., pp. 295e318.

Kladivko, E.J., 2001. Tillage systems and soil ecology. Soil. Till Res., 61, 61–76.

Bäumer, K., 1970. First experiences with direct drilling in Germany, Netherlands J. Agric. Sci. 18. 283e292.

Henle, K., Alard, D., Clitherow, J., Cobb, P., Firbank, L., Kull, T., Mccracken, D., Moritz, R.F.A., Niemelä, J., Rebane, M., Wascher, D., Watt, A., Young, J., 2008. Identifying and managing the conflicts between agriculture and biodiversity conservation in Europe e a review. Agric. Ecosyst. Environ., 124. 60e71.

Mazvimavi, K., Twomlow, S., 2008. Conservation farming for agricultural relief and development in Zimbabwe, in: T. Goddard, M.A. Zoebisch, Y.T. Gan, W. Ellis, A. Watson, S. Sombatpanit (Eds.), No-till Farming Systems, World Association of Soil and Water Conservation (WASWC), Bangkok. pp. 169e175 Spec. Publ., No. 3.

Chan, K.Y., 2001. An overview of some tillage impacts on earthworm population abundance and diversity e implications for functioning in soils, Soil Till. Res., 57. 179e191.

Lavelle, P., Decaens, M., Aubert, S., Barot, M., Blouin, F., Bureau, P., Margerie, P., Mora, J.P., Rossi., 2006. Soil invertebrates and ecosystem services, Eur. J. Soil Biol., 42. S3eS15.

Ruess, E.J., Garcia Zapata, J., Dighton., 2000. Food preferences of a fungal feeding Aphelenchoides species. Nematol., 2. 223e230.

Sabatini A., Rebecchi, L., Cappi, C., Bertolani, R., Fratello, B., 1997. Long-term effects of three different continuous tillage practices on Collembola populations. Pedob., 41. 185e193.

Ivask, M., Kuu, A., Sizov, E., 2007. Abundance of earthworm species in Estonian arable soils, Eur. J. Soil Biol., 43. 39e42.

Joschko, M., Diestel, H., Larink, O., 1989. Assessment of earthworm burrowing efficiency in compacted soil with a combination of morphological and soil physical measurements, Biol. Fertil. Soils., 8. 191e196.

Shipitalo, M.J., Protz, R., 1989. Chemistry and micromorphology of aggregation in earthworm casts, Geoderma., 45. 357e374.

Carter, M.R., Peters, R.D., Noronha, C., Kimpinski, J., 2009. Influences of 10 years of conservation tillage on some biological properties of a fine sandy loam in the potato phase of two crop rotations in Atlantic Canada, Can. J. Soil Sci., 89. 391e402.

Werner, M.R., Dindal, D.L., 1990. Earthworm community dynamics in conventional and low-input agroecosystems, Rev. Ecol. Biol. Sol., 26. 427e437.

Minton, A., 1986. Impact of conservation tillage on nematode populations, J. Nematol. 18. 135e140.

Larink, S. Schrader, 2000. Rehabilitation of degraded compacted soils by earthworms, Adv. Geoecol., 32. 284e294

Hobbs, R., 2007. Conservation agriculture: what is it and why is it important for future sustainable food production? J. Agric. Sci., 145. 127e138.

Lavelle P., Decaens, T., Aubert, M., Barot, S., Blouin, M., Bureau, F., Margerie, P., Mora, P., Rossi, J.P., 2006. Soil invertebrates and ecosystem services, Eur. J. Soil Biol., 42. S3eS15.

Derpsch, T., Friedrich, A.H., Kassam, L., Hongwen., 2010. Current status of adoption of no-till farming in the world and some of its main benefits, Int. J. Agric. Biol. Eng., 3. 1e25.

Ehrnsberger, Bodenzoologie und Agrarökosysteme., 1993. Informationen zu Naturschutz und Landschaftspflege in Nordwestdeutschland., 6. 11e41.

Lahmar, R., 2010. Adoption of conservation agriculture in Europe e lessons of the KASSA project, Land Use Policy., 27. 4e10.

Lenz, R., Eisenbeis, G., 2000. Short-term effects of different tillage in a sustainable farming system on nematode community structure, Biol. Fertil. Soils., 31. 237e245.

Mc Sorley, R., Gallaher, R.N., 1994. Effect of tillage and crop residue management on nematode densities on corn, J. Nematol., 26. 669e674.

Day, R.W., Quinn, G.P., 1989. Comparison of treatments after an analysis of variance in ecology, Ecol. Monogr., 59. 433e463.

Frey, D., Elliot, E.T., Paustian, K., 1999. Bacterial and fungal abundance and biomass in conventional and no-tillage agroecosystems along two climatic gradients, Soil Biol. Biochem., 31. 573e585.

Kaneda, S., Kaneko, N., 2008. Collembolans feeding on soil affect carbon and nitrogen mineralization by their influence on microbial and nematode activities, Biol. Fertil. Soils., 44. 435e442.

Dawod, E.A., Fitz P., 1993. Some population sizes and effects of the Enchytraeidae (Oligochaeta) on soil structure in a selection of Scottish soils, Geoderma., 56. 173e178.

Parisi, C., Menta, C., Gardi, C., Jacomini, E., Mozzanica., 2005. Microarthropod communities as a tool to assess soil quality and biodiversity: a new approach in Italy, Agric. Ecosyst. Environ., 105. 323e333.

Cheng, D.C., Coleman, J.E., Box., 1990. Root dynamics, production and distribution in agroecosystems on the Georgia piedmont using mini-rhizotrons, J. Appl. Ecol., 27. 592e604.

Karg, B., Freier., 1995. Parasitiforme Raubmilben als Indikatoren für den ökologischen Zustand von Ökosystemen, Mitt., BBA 51. 93.

Karg, W., 1968. Bodenbiologische Untersuchungen über die Eignung von Milben, insbesondere parasitiformen Raubmilben, als Indikatoren, Pedobiologia., 8. 30e39.

Karg, W., 1982. Untersuchungen über Habitatansprüche, geographische Verbreitung und Entstehung von Raubmilbengattungen der Cohors Gamasina für ihre Nutzung als Bioindikatoren, Pedobiologia., 24. 241e247.

Karg, W., 1986. Vorkommen und Ernährung der Milbencohors Uropodina (Schildkrötenmilben) sowie ihre Eignung als Indikatoren in Agrarökosystemen, Pedobiologia., 29. 285e295.

Capowiez, S., Cadoux, P., Bouchand, J., Roger-Estrade, G., Richard, H., Boizard., 2009. Experimental evidence for the role of earthworms in compacted soil regeneration based on field observations and results from a semi-field experiment, Soil Biol. Biochem., 41. 711e717.

Zaborski, E.R., Stinner, B.R., 1995. Impacts of soil tillage on soil fauna and biological processes. In: Farming For a Better Environment: A White Paper. Soil and Water Conservation Society. Ankeny., IA. pp. 13–15.

Published

2014-03-28

How to Cite

Hosein Talaei, G. ., & Gholamalizadeh Ahangar, A. . (2014). Effects of tillage systems on soil biodiversity. Agricultural Advances, 3(3), 84-93. Retrieved from http://www.sjournals.com/index.php/aa/article/view/611

Issue

Section

Agriculture