Cover Image

Amylolytic, lipolytic and proteolytic activity of Kocuria varians isolated from fermented African oil bean seed (Pentaclethra macrophylla)

Tochukwu Nwagu, Onyetugo Chioma Amadi


Kocuria/ Micrococcus species have been implicated as microbialpopulation of fermented African oil bean seed ‘ugba’, but has never beencharacterized and its role in the fermentation not known. In this study Kocuria varians was isolated fromfermented African oil bean seed. The organism could not utilize citrate and wascoagulase, methyl red and oxidase negative. It appeared as deep yellowcircular, entire, convex colonies without hemolytic reaction. The organism wasalkalophilic and moderately halophilic and could utilize a range of substratesas carbon source including soluble starch, bambara nut flour, palm, oil, oliveoil and gelatin. The K. varians isolateproduced extracellular amylase, lipase and protease when grown on variousmedia. Rate of production of these enzymes was dependent on the composition ofthe growth medium. Ability to produce proteolytic, lipolytic and amylolyticenzymes which are required to hydrolyze the major nutrients in African oil beanseed indicates that it could play a role in nutrient availability to thefermenting flora, or in aroma and flavor qualities of the fermented food.


Ben-Ami, R., Navon-Venezia, S., Schwartz, D., Carmeli, Y., 2003. Infection of a ventriculoatrial shunt with phenotypically variable Staphylococcus epidermidis masquerading as polymicrobial bacteremia due to various coagulase-negative staphylococci and Kocuria varians. J. Clin. Microbiol., 41, 2444-2447.

Cheesbrough M. District laboratory practices in tropical countries. Cambridge press, 2006.

Cocolin, L., Manzano, M., Aggio, D., Cantoni, C., Comi, G., 2001. A novel polymerase chain reaction (PCR)-denaturing gradient electrophoresis (DGGE) for the identification of Micrococcoceae strains involved in meat fermentations. Its application to naturally fermented Italian sausages. Meat Sci., 58, 59-64.

Dos Prazeres, J.N., Cruz, J.A.B., Pastore, G.M., 2006. Characterization of alkaline lipase from Fusarium oxysporum and the effect of different surfactants and detergents on the enzyme activity. Braz J Microbiol., 37,505-509.

Enujiugha, V.N., Akanbi, C.T., Adeniran, H.A., 2008. Evaluation of starters for the fermentation of African oil bean (Pentaclethra Macrophylla Benth) seeds. Nutr. Food. Sci., 38,451-457.

Isu, N.R., Njoku, H.O., 1997. An evaluation of the microflora associated with fermented African oil Bean (Pentaclethra macrophylla) seeds during ugba production. Plant Foods Hum Nutr., 51,145-157.

Kembhavi, A.A., Kulkarni, A., Pant, A., 1993. Salt-tolerant and thermostable alkaline protease from Bacillus subtilis NCIM No. 64. Appl Biochem Biotechnol., 38, 83–92.

Mbajunwa, O.K., Akingbola, J.O., Mulongoy, K., Oguntimein, G., 1998. Starter culture evaluation from the production of ugba from African oil bean seed Pentaclethra macrophylla. J. Sci. Food Agric., 77,127-132.

Mbata, T., Orji, M.U., 2008. Process optimization in the production and preservation of ugba a Nigerian fermented food. Int. J. Microbiol., 4,2-6.

Miller, G.L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem., 31,426-428.

Nwagu, T.N., Amadi, C.E., Alaekwe, O., 2010. Role of bacteria isolates in the spoilage of fermented African oil bean seed ugba. Pak. J. Biol. Sci., 13(10),497-503.

Nwagu, T.N., Okolo, B.N., 2011. Extracellular amylase production of a thermotolerant Fusarium sp. isolated from Eastern Nigerian Soil. Braz. J. Arch. Biol. Technol., 54(4), 649-658.

Nwagu, T.N., Orji, M.U., Nwobodo, I., Nwobodo, H.A., 2011. Mixed microbial flora as starter culture for the production of ugba from African oil bean seed. Asian J. Biol. Sci., 4(1), 62-69.

Obeta, J.A.N., 1983. A note on the microorganisms associated with the fermentation of seeds of the African oil bean tree (Pentaclethra macrophylla). J. Appl. Bacteriol., 54, 433-434.

Oboh, G., Ekperigin, M.M., 2004. Nutritional evaluation of some Nigerian wild seeds. Nahrung. Food., 48,85-87.

Papamanoli, E., Kotzekidou, P., Tzanetakis, N., Litopoulou-Tzanetaki, E., 2002. Characterization of Micrococcaceae isolated from dry fermented sausage. Food Microbiol., 19, 441-449.

Park, E.J., Kim, M.S., Roh, S.W., Jung, M.J., Bae, J.W. (2010a). Kocuria atrinae sp. nov. isolated from traditional Korean fermented seafood. Int J Syst Evol Microbiol., 60,914-918.

Park, E.J., Roh, S.W., Kim, M.S., Jung, M.J., Shin, K.S., Bae, J.W., 2010b. Kocuria koreensis sp. nov., isolated from fermented sea food. Int. J. Syst. Evol. Microbiol., 60,140-143.

Savini, V., Catavitello, C., Masciarelli, G., Astolfi, D., Balbinot, A., Bianco, A., 2010. Drug sensitivity and clinical impact of members of the genus Kocuria. J. Med. Microbiol., 59, 1395-1402.

Stackebrandt, E., Koch, C., Gvozkiak, O., Schumann, P., 1995. Taxonomic dissection of the Genus Micrococcus, Kocuria gen. nov., Nesterenkonia gen nov., Kytococcus gen. nov., Dermacoccus gen. nov., and Micrococccus Cohn 1872 gen. emend. Int. J. Syst. Bacteriol. 45(4), 682-692.

Takarada, H., Semine, M., Kosugi, H., Matsuo, Y., Fujisawa, T., Omata, S., 2008. Complete genome sequence of the soil actinomycete Kocuria rhizophila. J. Bacteriol., 190, 4139-4146.

Tremonte, P., Succi, M., Reale, A., Di Renzo, T., Sorrentino, E., Coppola, I., 2007. Interactions between strains of Staphylococcus xylosus and Kocuria varians isolated fermented meats. J. Appl. Microbiol., 103(3),743-751.

Tsai, C., Su, S., Cheng, Y-H., Chou, Y., Tsai, T., Lieu, A., 2010. Kocuria varians infection associated with brain abscess: A case report. BMC Infec Dis., 10, 102-106.

Yamaguchi, R., Inoue, Y., Ishibashi, M., Arakawa, T., Sumitani, J., Kawaguchi, T., 2012. Halophilic characterization of starch-binding domain from Kocuria varians α-amylase. Int. J. Biol. Macromol., 50(1), 95-102.

Full Text: PDF


  • There are currently no refbacks.

Parse error: syntax error, unexpected ';' in /home/sjour603/domains/^CCB^CCBBF62B%%footer.tpl.php on line 49