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A B S T R A C T 

 

In this paper, we introduce and discuss an algorithm for the 
numerical solution of two-dimensional two-sided fractional diffusion 
equation. The algorithm for the numerical solution of this equation is 
based on explicit finite difference approximation. Consistency, 
conditional stability, and convergence of the fractional order 
numerical method are described. Finally, numerical example is 
provided to show that the numerical method for solving   this 
equation   is an effective solution method. 

© 2013 Sjournals. All rights reserved. 

1. Introduction 

Fractional calculus is becoming a useful and, in some cases, key tool in the analysis of scientific problems in 
abroad array of fields such as physics, engineering, biology, and economics. In particular, fractional partial 
differential equations have turned out to be especially relevant. For example, fractional diffusion equations have 
been successfully used to describe diffusion processes where the diffusion is anomalous (Miller and Ross, 1993; 
Meerschaert and Tadjeran, 2004, 2006, 2007; Podlubny, 1999; Roop, 2005; Lin and Liu, 2004; Meerschaert et al., 
2006; Liu, 2009; Joaquín and Santos, 2011), and fractional diffusion.  

Difference methods and, in particular, explicit difference methods, are an important class of numerical 
methods for solving fractional and normal differential equations. The usefulness of the explicit methods and there 
as on why they are widely employed is based on their particularly attractive features (Yuste and Acedo, 2005; 
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Morton and Mayers, 1994): flexibility, simplicity, scanty computational demand, and the possibility of easy 
generalization to spatial dimensions higher than1. 

The method discussed in this paper is an explicit finite difference method designed for solving the two-
dimensional two-sided fractional diffusion where the fractional derivative is in the shifted Grunwald estimate 
form. The conditional stability and convergence of the explicit finite difference approximation are analyzed and 
finally, we will present example to show the efficiency of our numerical method. 

      2. Explicit difference method for solving the two-dimensional two-sided fractional diffusion equation  

  In this section, we use the explicit finite difference method for solving the two-dimensional two-sided 
fractional diffusion equation of the form: 
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In this problem initial and boundary conditions are considered which are: 

          u(x,y,0)= 


(x,y), for x0  x  xR and y0  y  yR                                                      

          u (x0,y,t) = 0, for  y0  y yR and  0 t  Τ 

          u(x,y0,t) = 0, for  x0  x  xR and  0 t  Τ                                                                                                                                                                               

          u (xR,y, t) = 1 (y,t), for  y0  y yR and  0 t  Τ 

          u (x,yR,t) = 2 (x,t), for  x0  x  xR and  0 t  Τ  
 

where a , b , and 


 are  known functions of  x and y , and the weights 
]1,0[1,1,,  eded

. 1 is 

a known function of  y  and t, 2 is a known function of x and t.   and


  are given fractional number.
q

is a 
knwon function of x, y and t.    

The left–handed 
 xu  , 

 yu   and the right–handed 
 xu  ,  

 yu   fractional 
derivatives by the shifted Grunwald estimate formulae are [ 2, 7]:  
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The finite difference method starts by dividing the x-interval [x0, xR] into n subintervals to get the grid points  

xi = x0 + ix, where  
  nxxx R 0

 and i = 0,1,…,n.  and we divide the   y-interval [y0, yR] into m subintervals to 

get the grid points yj = y0+jy, where 
  myyy R 0

 and j=0,1,…,m.  

Also, the t-interval [0,T ] is divided   into M subintervals to  get the grid points  ts = st,       s = 0,…, M, where 

MTt  . 
Now, we evaluate eq. (1) at (xi , y j ,t s) and use the explicit Euler method to get 
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Use fractional derivative of the shifted Grunwald estimate eq.(2), to reduce eq.(3) to the following form: 
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The resulting equation can be explicitly solved for  
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Also from the initial condition and boundary conditions one can get 
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3. Stability of explicit difference method two-dimensional two-sided fractional diffusion equation  

We define the following fractional partial difference operator: 























1

0

,1,

1

0

,,1,,,, )1(
i

k

s

jkik

in

k

ji

s

jkikji

s

jix ug
x

t
daug

x

t
adu 

 

               which is of 
)( xO 

 approximation to the  th fractional derivative. Similarly, the following 
fractional partial difference operator is defined.  























1

0

1,,

1

0

,1,,,,, )1(
j

k

s

kjik

jm

k

ji

s

kjikji

s

jiy ug
y

t
ebug

y

t
beu 

 

            is of 
)( yO 

 approximation of the


-order Grunwald shifted fractional derivative term. 
With these definitions, the explicit difference scheme (5) may be written in the following compact form:   
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The above three-dimensional two-sided of explicit method has local truncation error of the form
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 which introduces an additional perturbation error equal to 
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Now, we must prove that each one-dimensional explicit system defined by the linear difference eqs. (9) and 
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To illustrate this matrix pattern, we list the corresponding equations for the rows i =1, 2 and   n-1:  
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Same method above, resulting the system of equations defined by (10) is then defined by 
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kS
 is the matrix of coefficients, and is the sum of a lower triangular matrix and a super diagonal matrix at the 

grid point xk for
1,,1  nk 

. Therefore the resulting matrix entries
kS

for 1,,2,1  mi  and
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  are defined by 
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So, and in the same way, According to the Greshgorin theorem [9], to get  
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   4. Consistency and convergent of explicit difference method two-dimensional two-sided fractional 
diffusion equation 

To obtain the consistency of the two-dimensional two-sided fractional Diffusion equation, note that the time 

difference operator in (6) has a local truncation error of order 
),( tO 

 and the three space difference operators in 

(6) have local truncation errors of orders 
)( xO 

 and 
)( yO 

. Similar to Lemma 2.1 in paper of  Meerschaert et 
al., (2006), we can obtain the following result: 

)(),(),( yxyxfyxf
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
 

Which leads to the two-dimensional two-sided fractional Diffusion equation with order

)()()()( zOyOxOtO 
. 

We show above that explicit Euler method is consistent and conditionally stable, then by Laxs equivalence 

theorem,[12], it converges at the rate
)( tzyxO 

. 

    5. Numerical simulation and comparison 

In this section, we implement the proposed method to solve two-dimensional two-sided  fractional diffusion 
equation (1). Also, a comparison with numerical solution and exact solution, which is based on the explicit finite 
difference approximation of fractional derivative, is given.  
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 Example: Consider the two-dimensional two-sided the fractional diffusion equation:  
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subject to the initial condition   

        u (x,y,0) = x2y, 0  x  1, 0 < y < 1 
and the boundary conditions 

        u (0,y,t) = 0, 0 < y < 1, 0  t 0.025   

        u (x,0,t) = 0, 0 < x < 1, 0  t 0.025  

        u (1,y,t) = e-3ty, 0 < y < 1, 0  t 0.025   

        u (x,1,t) = e-3tx2, 0 < x < 1, 0  t 0.025  
This fractional partial differential equation together with the above initial and boundary condition is 

constructed such that  the exact solution is u(x,y,t) = e-3tx2y.  
    Table 1 and 2 show the numerical solution using the explicit finite difference approximation. From table 1 

and 2, it can be seen that that good agreement between the numerical solution and exact solution. 
   Tables 3 show Maximum error between the exact analytical solution and the numerical solution obtained 

by applying the explicit Euler method discussed in this paper. 
 
 

  Table 1 
The numerical solution of example by using the finite difference method. 

)0125.0,2.0,2.0(  tyx  
x = y t Numerical Solution Exact Solution |uex -uapprox.| 

0.2 0.0125 4.509E-3 7.70556 E -3 3.19656 E -3 
0.4 0.0125 0.055 6.16444 E -2 6.64444 E -3 
0.6 0.0125 0.198 0.20805 1.00500 E -2 
0.8 0.0125 0.481 0.49316 1.21555 E -2 
0.2 0.0250 0.012 7.42195 E -3 4.57805 E -2 
0.4 0.0250 0.105 5.93756 E -2 4.56244 E -2 
0.6 0.0250 0.141 0.20039 5.93926 E -2 
0.8 0.0250 0.475 0.47500 4.66500 E -6 

 
Table 2 
The numerical solution of example by using the finite difference method. 

)0125.0,25.0,25.0(  tyx  
x = y t Numerical Solution Exact Solution |uex -uapprox.| 

0.25 0.0125 0.011 1.50499 E -2 4.04991 E -3 
0.50 0.0125 0.112 0.12040 8.39930 E -3 
0.75 0.0125 0.394 0.40635 1.23476 E -2 
0.25 0.0250 0.020 1.44960 E -2 5.50400 E -3 
0.50 0.0250 0.166 0.11597 5.00321 E -2 
0.75 0.0250 0.388 0.39139 3.39178 E -3 

                                         
     Table 3 
Maximum error for the numerical solution of example by using the finite difference method. 

x =
y

 
t  Maximum Error 

0.20 0.0125 0.0121555 
0.25 0.0125 0.0123476 
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6. Discussion 

In this paper, a numerical method for solving two-dimensional two-sided fractional diffusion equation has 
been described and demonstrated. The explicit Euler method is proved to be conditionally stable and converges. 
Furthermore numerical example is presented to show that good agreement between the numerical solution and 
exact solution has been noted 
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