Importance and function of microbial communities in aquaculture systems with no water exchange

Authors

  • María del Carmen Monroy Dosta Universidad Autónoma Metropolitana- Unidad Xochimilco. Depto. El Hombre y su Ambiente. Laboratorio de Producción de Alimento Vivo para la Acuicultura, México
  • Gustavo Universidad Autónoma Metropolitana- Unidad Xochimilco. Depto. El Hombre y su Ambiente. Laboratorio de Producción de Alimento Vivo para la Acuicultura, México
  • A. Rodríguez Montes de Oca Facultad de Ciencias del Mar, Universidad Autónoma de Sinaloa (FACIMAR-UAS), Mazatlán Sinaloa, México
  • Jorge Castro Mejía Universidad Autónoma Metropolitana- Unidad Xochimilco. Depto. El Hombre y su Ambiente. Laboratorio de Producción de Alimento Vivo para la Acuicultura, México
  • Germán Castro Mejía y Universidad Autónoma Metropolitana- Unidad Xochimilco. Depto. El Hombre y su Ambiente. Laboratorio de Producción de Alimento Vivo para la Acuicultura, México
  • Daniel Becerril Cortés Universidad Autónoma Metropolitana- Unidad Xochimilco. Depto. El Hombre y su Ambiente. Laboratorio de Producción de Alimento Vivo para la Acuicultura, México

Keywords:

Bacteria, Biofloc, aquatic system, aquaculture

Abstract

The goal of this review  is to analyze the importance of microbial communities in systems with zero or no water exchange or also called Bioflc, this because in recent decades has developed a strong interest in its use for the cultivation of various aquatic species such as shrimp and tilapia primarily though the function that these bacterial groups discharge in the system is unknown, making it relevant analysis mainly because the microorganisms are the foundation for the transfer of matter energy and enabling the production of small organisms such as ciliates, rotifers and protozoa, nematodes and others that can serve as natural food in situ for cultivated species, and positive impact on water quality due to microbial transformation of all performing waste generated in these systems where water exchange is limited. The knowledge of the behavior of microbial communities in the Biofloc systems will allow better management and therefore greater benefits obtained so far.

References

Acinas, S.G., 2001. Biodiversidad procariótica de ambientes acuáticos marinos e hipersalinos. Tesis Doctoral. Universidad Miguel Hernández, Alicante, España. 250p.

Alvarado-Castro, J.A., 2012. Identificación de bacterias heterótrofas de género Pseudomonas en dos temporadas climáticas del Lago Catemaco y la Laguna Sontecomapan, Veracruz, México. Tesis de Licenciatura. Departamento El Hombre y su Ambiente. Universidad Autónoma Metropolitana. México. 60p.

Amilcar, M.C., 2008. Caracterización y tratamiento de aguas residuales. Tesis de Licenciatura en Ingeniería Industrial. Universidad Autónoma del Estado de Hidalgo, México.296p.

Arellano-Carbajal, F., Olmos-Soto, J., 1999. Enzimas amiloliticas microbianas. Biotecnol. 4, 115

Asaduzzaman, M., Wahab, M.A., Verdegem., M.C.J., Huque, S., Salam, M,A., Azim, M.E., 2008. C/N ratio control and substrate addition for periphyton development jointly enhance freshwater prawn Macrobrachium rosenbergii production in ponds. Aquac. 280, 117–123.

Avnimelech, Y., 1999. Carbon/nitrogen ratio as a control element in aquaculture systems. Aquac. 176, 227-235.

Avnimelech, Y., 2009. Biofloc technology a practical guide book, 181 pp. The World Aquaculture Society, Baton Rouge.181p.

Azam, F., Smith, D.C., Long, R.A., Steward, G.F., 1995. Bacteria in oceanic carbon cycling as a molecular problem. In Molecular Ecology of aquatic microbes edited by Ian Joint, Nato. ASI series, Series Ecol. Sci. 38, 39-54.

Azim, M., Little, D., 2008. The biofloc technology (BFT) in indoor tanks: Water quality, biofloc composition and growth and welfare of Nile Tilapia (Oreochromis niloticus). Aquac. 283, 29-35.

Barrera, L.y., Charry, N., 2008. Producción y evaluación de un inoculante microbiano con capacidad amilolítica a partir de un proceso de compostaje de residuos de lechuga. Trabajo de grado. Pontificia Universidad Javeriana. 43-44.

Borja, A., 2002. Los impactos ambientales de la acuicultura y la sostenibilidad de esta actividad. Bol. Inst. Esp. Oceanog. 18(1-4), 41-49.

Cardoso, A.M., Cavalcante, J.J.V., Vieira, R.P., 2012. Gut bacterial communities in the giant land snail achatina fulica and their modification by sugarcane-based diet. Moustafa A, ed. PLoS ONE; 7(3), e33440. doi:10.1371/journal.pone.0033440.

Crab, R., Lambert, A., Defoirdt, T., Bossier, P., Verstraete, W.T., 2010. The application of bioflocs technology to protect brine shrimp (Artemia franciscana) from pathogenic Vibrio harveyi. J. Appl. Microbiol. 109(5), 1643–1649.

Crab, R. T., Defoirdt, B.P., Verstraete, P., 2012. Biofloc technology in aquaculture: Beneficial effects and future challenges. Aquac. 356-357, 351-356.

De la Cruz-Leyva, M.C., Zamudio-Maya, M., Corona-Cruz, A. I., González-de la Cruz, J.U., Rojas-Herrera, R. A., 2015. Importancia y estudios de las comunidades microbianas en los recursos y productos pesqueros. Ecosistemas y Recursos Agropecuarios. 2(4), 99-115.

Del Mar, M., Liébana, P., Gibello, A., Alcalá, C., Fernández, .J., Domínguez, L., 2004. Principales patologías bacterianas en la psicultura Española. En Revista Electrónica de Veterinaria. 12 pp.

Daims, H., Nielsen, J.L., Nielsen, P.H., Schleifer, K.H., Wagner, M., 2001. In situ characterization of nitrospira-like nitrite-oxidizing bacteria active in wastewater treatment plants. Appl. Environ. Microbiol. 67, 5273–5284.

De Schryver, P., Crab, R., Defoirdt, T., Boon, N., Verstraete, W., 2008. The basics of bio-flocs technology: The added value for aquaculture. Aquac. 277, 125-137.

Defoirdt, T., Miyamoto, C., Wood, T.K., Meighen, E.A., Sorgeloos, P., Verstraete, W., 2007. The natural furanone (5Z)-4-bromo-5-(bromomethylene)-3-butyl-2(5H)-furanone disrupts quorum sensing-regulated gene expression in Vibrio harveyi by decreasing the DNA-binding activity of the transcriptional regulator protein luxR. Environ. Microbiol. 9, 248.

Díaz, R.G., Wacher, R., C., 2013. Métodos para el estudio de comunidades microbianas en alimentos fermentados. Revista Latinoamericana de Microbiología. 45(1-2), 30-40.

Ebeling, J.M., Timmons, M.B., Bisogn, J.J., 2006. Engineering analysis of the stoichiometry of photoautotrophic, autotrophic, and heterotrophic removal of ammonia–nitrogen in aquaculture systems. Aquac. 257, 346–358.

Ekasari, J., Azhar, H., Surawidjaja, M., Nuryati, E.H., De Schryver, S,P., Bossier, P., 2014. Immune response and disease resistance of shrimp fed biofloc grown on different carbon sources. Fish. Shellfish. Immunol. 41(2), 332-9. doi: 10.1016/j.fsi.09.004.

Emerenciano, M., Cuzon, G., Arevalo, M., Gaxiola, G., 2013. Biofloc technology in intensive broodstock farming of the pink shrimp Farfantepenaeus duorarum: spawning performance, biochemical composition and fatty acid profile of eggs. Aquac. Res. January,

González–Ocampo, H.A., Morales, L.F.B., Cáceres–Martínez, C., Aguirre, H.R., Hernández–Vázquez, S., Troyo–Dieguez, E., Ortega–Rubio, A., 2006. Shrimp aquaculture environmental diagnosis in the semiarid coastal zone in Mexico. Fresen. Environ. Bull. 15, 659–669.

Hargreaves J. A., 2013. Biofloc production systems for aquaculture. SRAC. 4503, 12.

Hagopian, D.S., Riley, J.G., 1998. A closer look at the bacteriology of nitri cation. Aquac. Eng. 18: 223 244.

Hong H. A., le Duc H., Cutting S.M., 2005. The use of bacterial spore formers as probiotics. FEMS Microbiol. Rev. 29, 813–835 10.1016/j.femsre.2004.12.001 [PubMed] [Cross Ref]

Kim, Ji-Yeon Hur, Sung-Ho Hong, Jeong-Hwa., 2005. Purification and characterization of an alkaline cellulase from a newly isolated alkalophilic Bacillus sp. HSH-810. Biotechnol. Letters. 27(5), 313-316.

Kim, H.I., Xie, X., Kim, H.S., Chun, J.C., Yoneyama, K., Nomura, T., Takeuchi, Y., Yoneyama, K., 2010. Structure-activity relationship of naturally occurring strigolactones in Orobanche minor seed germination stimulation. J. Pestic. Sci. 35, 344–347.

Laloo, R., S., Ramchuran, D., Ramduth, J., Gorgens, N., Gardiner.N., 2007. Isolation and selection of Bacillus spp. as potential biological agents for enhancement of water quality in culture of ornamental fish. J. Appl. Microbiol., 103, 1471-1479.

Lyautey, E., Lacoste, B., Ten-Hage, L., Rols, J.L., Garabetian, F., 2005. Analysis of bacterial diversity in river biofilms using 16S rDNA PCR-DGGE: methodological settings and fingerprints interpretation. Water. Res. 39, 380 – 38.

López, L.A., Zaballos, A., 2005. Diversidad y actividad procariota en ecosistemas marinos Revista Ecosistemas 14(2) ,30-40.

López, R., Negrete, P.y.J., Romero., 2007. Comprobacion in vivo de la capacidad antibacterial de oedogonium capillare contra vibrio fluvialis en pez dorado carassius auratus. En Veterinaria México. 38(4), 439-454.

Martínez-Córdova, L.R., Martínez-Porchas, l., López-Elias, .J.A., Miranda- Baeza, A., Ballester, E., 2011. Estado actual del uso de biopelículas y bioflóculos en el cultivo de camarón. En: Cruz-Suárez, L.E., Ricque-Marie, D., Tapia Salazar,M., Nieto-López, M.G., Villarreal-Cavazos, D. A., Gamboa-Delgado, J., Hernández-Hernández, L. (Eds), Avances en Nutrición Acuícola XI - Memorias del Onceavo Simposio Internacional de Nutrición Acuícola, 23-25 de Noviembre, San Nicolás de los Garza, N. L., México. ISBN 978-607-433-775-4. Universidad Autónoma de Nuevo León, Monterrey, México, 393-423.

Miravet, M. E., 2003. Abundancia, actividad y diversidad de las bacterias heterótrofas en el Golfo de Batabanó y su uso como indicadoras ambientales. Tesis presentada en opción al grado científico de Doctor en Ciencias Biológicas. Facultad de Biología, Universidad de la Habana, La Habana, 94 p. Anexos. Online http://ww.oceandocs.org ISBN: 978-959-298-013-6.

Monroy-Dosta, M.C., De Lara-Andrade, R., Castro-Mejía, J., Castro-Mejía, G., Coelho-Emerenciano, M.G., 2013. Composición y abundancia de comunidades microbianas asociadas al biofloc en un cultivo de tilapia. Revista de Biología Marina y Oceanografía, 48(3), 511-520.

Negrete, P., 2004. Estudio de Vibrio fluvialis (Lee et al., 1981) y Vibrio furnissii (Brenner et al., 1984) como agentes causantes de infecciones en el pez dorado Carassius auratus (Linnaeus, 1758). Tesis que para obtener el grado de Doctor en Ciencias Biologicas. México, Universidad Autónoma Metropolitana- Xochimilco.

Paniagua-Michel, J., García, .O.G., 2003. Ex-situ bioremediation of shrimp culture effluent using constructed microbial mats. Aquac. Eng., 28, 131- 139.

Pelczar, M.J., Chan., E.C.S., Krieg, N.R., (2002). Control by chemical agent. microbiology. 5th (edn), tata mcgraw hill inc. New York, 488-505.

Primavera, J.H., 2006. Overcoming the impacts of aquaculture on the coastal zone. Ocean coast. Manage. 49, 531–545.

Ray, A., Seaborn, G., Leffler, J., Wilde, S., Lawson, A., Browdy, C., 2010. Characterization of the microbial communities in minimalexchange, intensive aquaculture systems and the effects of suspended solids management. Aquac. 310, 130-138.

Ruiz, G.D., Wacher, R.C., 2003. Métodos para el estudio de comunidades microbianas en alimentos fermentados. Rev. Latinoamer.Microbiol. 45(1-2), 30-40.

Samocha, T.M., Patnaik, S., Speed, M., Ali, A.M., Burger, J.M., Almeida, R.V, Ayub, Z., Harisanto, M., Horowitz, A., Brock, D.L., 2007. Use of molasses as carbon source in limited discharge nursery and grow-out systems for Litopenaeus vannamei. Aquac. Eng. 36, 184–191.

Ziaei-Nejad, S., Rezaei, M.H., Takami, G.A., Lovett, D.L., Mirvaghefi, A.R., Shakouri, M., 2006. The effect of Bacillus spp. bacteria used as probiotics on digestive enzyme activity, survival and growth in the Indian white shrimp Fenneropenaeus indicus. Aquac. 252, 516–524.

Wu, L., Peng, C., Peng, Y., Li, L., Wang, S., Ma, Y., 2012. Effect of wastewater COD/N ratio on aerobic nitrifying sludge granulation and microbial population shift. J.Environ. Sci. 24(2), 234-241.

Published

2015-09-25

How to Cite

María del Carmen Monroy Dosta, Gustavo, A. Rodríguez Montes de Oca, Jorge Castro Mejía, Germán Castro Mejía y, & Daniel Becerril Cortés. (2015). Importance and function of microbial communities in aquaculture systems with no water exchange. Scientific Journal of Animal Science, 4(9), 103-110. Retrieved from https://www.sjournals.com/index.php/sjas/article/view/234

Issue

Section

Original Article

Most read articles by the same author(s)