Use of microsporidia as selective parasites in aquatic and continental environments


  • Yasamin Pesaran Afsharian Department of Chemical Engineering, Islamic Azad University, Tabriz, Iran


Microsporidia, Biological control agent, Aquatic environments, Continental environments


Microsporidia are unicellular organisms that can function as living cell parasites. Despite the fact that entomopathogenic microsporidian fungi are unsatisfactory microbial pesticides (in exception for destroying invertebrates), they generally were used in agricultural section. Researchers shown that most of the microsporidia species have a noticeable potential to act as natural control agents, and this zenith is for their ability to distribute among living organisms by means of vertical or horizontal transmission techniques in both aquatic and continental environments. Besides being used as natural pest controllers, since some microsporidia species can damage beneficial insects, this paper would examine mechanisms of microsporidia transmission in different environments in the purpose of increasing their impact on target ecological hosts and, simultaneously, decreasing the possibility of microsporidia transmission among other beneficial creatures.


Anderson, R.M., May, R.M., 1981. The population dynamics of microparasites and their invertebrate hosts. Phil. Trans. Roy. Soc. Lond. B., 291, 459-584.

Andreadis, T.G., 1984. Epizootiology of Nosema pyrausta in field populations of the European corn borer (Lepidoptera: Pyralidae). Environ. Entomol., 13, 882-887.

Andreadis, T.G., 1999. Epizootiology of Amblyospora stimuli (Microsporidiida: Amblyosporidae) infections in field populations of a univoltine mosquito, Aedes stimulans (Diptera: Culicidae), inhabiting a temporary vernal pool. J. Invertebr. Pathol., 74, 198-205.

Andreadis, T.G., 2005. Evolutionary strategies and adaptations for survival between mosquito-parasitic microsporidia and their intermediate copepod hosts: A comparative examination of Amblyospora connecticus and Hylanocysta chapmani (Microsporidia: Amblyosporidae). Folia Parastiol., 52, 23-35.

Andreadis, T.G., Takaoka, H., Otsuka, Y., Vossbrinck, C.R., 2013. Morphological and molecular characterization of a microsporidian parasite, Takaokaspora nipponicus n.gen., sp. from the invasive rock pool mosquito, Ochlerotatus japonicus. J. Invertebr. Pathol., 114, 161-172.

Becnel, J.J., Andreadis, T.G., 1999. Microsporidia in insects, In: Wittner, M., Weiss, L.M. (Eds.), the Microsporidia and microsporidiosis. ASM Press, Washington, DC, 517-530.

Becnel, J.J., Sprague, V., Fukuda, T., Hazard, E.I., 1989. Development of Edhazardia aedis (Kudo, 1930) n.g., n. comb. (Microsporida: Amblyos- poridae) in the mosquito Aedes aegypti (L.) (Diptera: Culicidae). J. Protozool., 36, 119-130.

Briano, J.A., 2005. Long-term studies of the red imported fire ant, Solenopsis invicta, infected with the microsporidia Vairimorpha invictae and Thelohania solenopsae in Argentina. Environ. Entomol., 34, 124-132.

Brooks, W.M., 1968. Transovarian transmission of Nosema heliothidis in the corn earworm, Heliothis zea. J. Invertebr. Pathol., 11, 510-512.

Brooks, W.M., Cranford, J.D., 1978. Host parasite relationships of Nosema heliothidis Lutz and Splendor. Misc. Publ. Entomol. Soc. Am., 11, 51-633.

Dunn, A.M., Smith, J.E., 2001. Microsporidian life cycles and diversity: The relationship between virulence and transmission. Microbes Infect., 3, 381-388.

Dunn, A.M., Terry, R.S., Smith, J.E., 2001. Transovarial transmission in the microsporidia. Adv. Parasitol., 48, 57-100.

Federici, B.A., Maddox, J.V., 1996. Host specificity in microbe-insect interactions. Biosci., 46, 410-421.

Franz, J.M., Huger, A.M., 1971. Microsporidia causing the collapse of an outbreak of the green tortrix (Tortrix viridana L.) in Germany. Proc. 4th Intern. Colloq. Insect Pathol., 48-53.

Franzen, C., Müller, A., 1999. Molecular techniques for detection, species differentation, and phylogenetic analysis of microsporidia. Clin. Microbiol. Rev., 12, 243-285.

Fries, I., 1989. Observations on the development and transmission of Nosema apis Z. in the ventriculus of the honeybee. J. Apicul. Res., 28, 107-117.

Fries, I., Granados, R.R., Morse, R.A., 1992. Intracellular germination of Nosema apis Z. Apidologie 23, 61-70.

Goertz, D., Solter, L.F., Linde, A., 2007. Horizontal and vertical transmission of a Nosema sp. (Microsporidia) from Lymantria dispar (L.) (Lepidoptera: Lymantriidae). J. Invertebr. Pathol., 95, 9-16.

Heilveil, J.S., Kohler, S.L., Solter, L.F., 2001. Studies on the life cycle and transmission of Cougourdella sp., a microsporidian parasite of Glossosoma nigrior (Trichoptera: Glossosomatidae). Great Lakes Entomol., 34, 9-15.

Ironside, J.E., Dunn, A.M., Rollinson, D., Smith, J.E., 2003a. Association with host mitochondrial haplotypes suggests that feminizing Microsporidia lack horizontal transmission. J. Evol. Biol., 16, 1077-1083.

Ironside, J.E., Smith, J.E., Hatcher, M.J., Sharpe, R.G., Rollinson, D., Dunn, A.M., 2003b. Two species of feminizing microsporidian parasites coexist in populations of Gammarus duebeni. J. Evol. Biol., 16, 467-473.

Iwano, H., Ishihara, R., 1991. Dimorphism of spores of Nosema spp. in cultured cell. J. Invertebr. Pathol., 57, 211-219.

Kellen, W.R., Lindegren, J.E., 1973. Transovarian transmission of Nosema plodiae in the Indian-meal moth, Plodia interpunctella. J. Invertebr. Pathol., 21, 248-254.

Knell, J., 1981. Microsporidium goeldichironomi new species and microsporidium chironomi new species (Microsporida: Apansporoblastina), two new microsporidia from Florida USA chironomids. J. Invertebr. Pathol., 37, 129-137.

Kohler, S.L., Wiley, M.J., 1992. Parasite-induced collapse of populations of a dominant grazer in Michigan streams. Oikos., 65, 443-449.

Kramer, J.P., 1959. Observations on the seasonal incidence of microsporidiosis in European corn borer populations in Illinois. Entomophaga, 4, 37-42.

Linde, A., 1993. Können Mikrosporidien (Protozoa) zur Populations regulation des Schwammspinners (Lymantria dispar L.) beitragen? In: Wulf, A. (Ed.), Schwammspinner-Kalamität im Forst, Mitt. Biol. Bundesanst. Land-Forstw, Vol. 293. Paul Parey, Berlin und Hamburg, 125-129.

Maddox, J.V., 2002. Environmental persistence of microsporidia, In: Baur, M.E., Fuxa, J.R. (Eds.), Factors affecting the survival of entomopathogens. Southern Cooperative Series Bulletin 400.

McManus, M.L., Solter, L., 2003. Microsporidian pathogens in European gypsy moth populations. Proceedings: Ecology, survey, and management of forest insects. USDA Forest Service, Northeast Research Station Gen. Tech. Rep. NE-311, 44-51.

Ni, X., Backus, E.A., Maddox, J.V., 1997. Transmission mechanisms of Nosema empoascae (Microspora: Nosematidae) in Empoasca fabae (Homoptera: Cicadellidae). J. Invertebr. Pathol., 69, 269-275.

Nordin, G.L., 1975. Transovarial transmission of a Nosema sp. infecting Malacosoma americanum. J. Invertebr. Pathol., 25, 221-228.

Oi, D.H., Williams, D.F., 2002. Impact of Thelohania solenopsae (Microsporidia: Thelohaniidae) on polygyne colonies of red imported fire ants (Hymenoptera: Formicidae). J. Econ. Entomol., 95, 558-562.

Patil, C.S., Jyothi, N.B., Dass, C.M.S., 2002. Role of Nosema bombycis infected male silk moths in the venereal transmission of pebrine disease of Bombyx mori (Lep., Bombycidae). J. Appl. Entomol., 126, 563-566.

Roberts, D.W., Fuxa, J.R., Gaugler, R., Goettel, M., Jaques, R., Maddox, J., 1990. Use of pathogens in insect control. In “CRC Handbook of Pest Management in Agriculture” (Pimentel, D., Ed.). 243-278. CRC Press, Boca Raton.

Rodgers-Gray, T.P., Smith, J.E., Ashcroft, A.E., Isaac, R.E., Dunn, A.M., 2004. Mechanisms of parasite-induced sex reversal in Gammarus duebeni. Int. J. Parasitol., 34, 747-753.

Sajap, A.S., Lewis, L.C., 1988. Histopathology of transovarial transmission of Nosema pyrausta in the European corn borer, Ostrinia nubilalis. J. Invertebr. Pathol., 52, 147-153.

Siegel, J.P., Maddox, J.V., Ruesink, W.G., 1986. Lethal and sublethal effects of Nosema pyrausta on the European corn borer, Ostrinia nubilalis in central Illinois USA. J. Invertebr. Pathol., 48, 167-173.

Solter, L.F., 2006. Transmission as a predictor of ecological host specificity with a focus on vertical transmission of microsporidia. J. Invertebr. Pathol., 92, 132-140.

Solter, L.F., Becnel, J.J., 2000. Entomopathogenic microsporidia, In: Lacey, L., Kaya, H. (Eds.), Field manual of techniques for the evaluation of Entomopathogens. Kluwer Academic Publishers, 231-254.

Solter, L.F., Maddox, J.V., Onstad, D.W., 1991. Transmission of Nosema pyrausta in adult European corn borers. J. Invertebr. Pathol., 57, 220-226.

Solter, L.F., Onstad, D.W., Maddox, J.V., 1990. Timing of disease-inXu-enced processes in the life cycle of Ostrinia nubilalis infected with Nosema pyrausta. J. Invertebr. Pathol., 55, 337-341.

Vossbrinck, C.R., De Brunner-Vossbrinck, B.A., 2005. Molecular phylogeny of the microsporidia: ecological, ultrastructural and taxonomic considerations. Folia Parasitol., 52, 131-142.

Wilson, G.G., 1973. Incidence of microsporidia in a field population of spruce budworm. Can. For. Ser. Bi-mon. Res. Not., 29, 35.

Wittner, M., Weiss, L.M., 1999. The microsporidia and microsporidiosis. American Society for Microbiology Press, Washington, DC. 572p.



How to Cite

Pesaran Afsharian, Y. . (2018). Use of microsporidia as selective parasites in aquatic and continental environments. Scientific Journal of Biological Sciences, 7(3), 247-252. Retrieved from



Review Article