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A B S T R A C T 

 

Ultraviolet (UV) irradiation is a common disinfection option for 
water treatment. UV irradiation inactivates bacteria, viruses, and 
protozoa, with the benefits of no taste and odor issues, no known 
disinfection byproducts (DBPs), no danger of overdosing, relatively 
fast treatment rates compared to sand filtration. Ultraviolet-light-
emitting diode (UV LED) contains no mercury, and its compact size 
and durable design offer excellent portability. The object of this 
study was to compare the inactivation efficiency of UV-C and UV-C 
LED for water disinfection. The collimated-beam system was used for 
this study. For the microorganisms to be tested, E. coli (ATCC 15597), 
which readily responds to UV light, and  Bacillus subtilis sp. (ATCC 
6633) were used. E. coli were 3 log inactivation of UV-C and UV-C 
LED applied fluence of 18 mJ/cm2 at pH 7 and Bacillus subtilis sp. 
were 2 log inactivation of UV-C and UV-C LED applied fluence of 40 
mJ/cm2 at pH 7. UV-C LED disinfection was found to have nearly the 
same level of UV-C disinfection. 

© 2016 Sjournals. All rights reserved. 

1. Introduction 

The UV (Ultraviolet) disinfection to disinfect the drinking water has been growing as the textbook method to 
replace the chlorine disinfection to inactivate the pathogenic microorganisms without generating the side products 
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of disinfection (Bohrerova et al., 2006). However, the low pressure or intermediate pressure mercury lamp mostly 
used for UV disinfection is toxic, consumes high energy, and require often replacement due to the short life. 
Therefore, development of technology to replace UV has been ongoing, and the UV LED (Ultraviolet Light Emitting 
Diode) technology has gained the interest (Wang et al., 2005; Vilhunen et al., 2009). Compared to mercury lamps, 
UV LED is generally smaller and economical, consumes less power, is not toxic and has long life due to the high 
efficiency. LED does not contain, and its small and solid design has long durability and enables transport. 
Moreover, it has no warming-up time, consumes low voltage and low energy, has the potential for high energy 
efficiency, and can reduce the replacement period as the life is extended. Recent studies report that the UV LED 
technology is also effective in disinfection and show the interest on applying it for water disinfection (Bowker et 
al., 2011; Wrtele et al., 2011). This study intended to test inactivation of microorganisms using UV and UV LED, 
apply the leading disinfection models to find the disinfection model that is the most appropriate for UV LED 
disinfection, and mathematically present the interaction between the given conditions of microorganisms and 
disinfectants. In addition, it reviewed the applicability of UV LED disinfection of drinking water to replace UV. 

2. Materials and methods 

2.1. Equipment 

Fig. 1 shows the collimated beam device of UV and UV LED  system. Collimated-beam UV system was used for 
UV disinfection. 4 low-pressure UV lamps (Germicidal Lamp (253.7 nm), (4 W, Philips Co.) were used as the light 
source, and the distance between the reactor and lamp was adjusted to 0.1~0.4 mW/cm2 (Shin et al., 2001; Cho et 
al., 2004). For testing, the UV LED module had 6 UV LEDs (UVTOP255, average wavelength 260 nm) laid out side by 
side, and the distance between the reactor and lamp adjusted to 5 cm so that the vertical light intensity was 
around 0.004 mW/cm2. For UV and UV LED disinfection, Pyrex Deep Petri-dish (50 mL, 6 by 3 cm) was used as the 
reactor, and a magnetic stirrer was used to stir. The light intensity was measured using UV 253.7 Detector (UVX 
radiometer, UVP Co.).  

         
                                               (a) UV                                                                            (b) UV LED 
                                                                       Fig. 1. Experimental equipment. 

2.2. Culturing microorganism and analysis 

E.Coli (ATCC 15597) and bacillus subtilis sp. (ATCC 6633) were tested. To generate the bacillus subtilis sp., the 
frozen B. subtilis sp. solution was inoculated to the nutrient broth (Difco Co., USA) using platinum loop and 
cultivated at 37°C. It was then spread to the 1/10 nutrient agar and cultivated for 5~6 days. The induced 
sporulation was collected and suspended in PBS for cleaning then heat treated at 80°C for 15 minutes. To measure 
the concentration of bacillus subtilis sp., it was spread to the nutrient agar, cultivated at 37°C for 24 hours and 
then measured in the spread plate method (APHA, 1998). The bacillus subtilis sp. was always heat treated, and 
only the spores were used for experiment (Nakayama et al., 1996). To cultivate and analyze the E.Coli, E.Coli (ATCC 
15597) was inoculated to the 50 mL of tryptic soy broth (Difco Co., USA) and cultivated at 37°C for 18 hours. It was 
then moved to a 50 mL conical tube and then cleaned in PBS at 1,000×g for 10 minutes. The pellets were 
suspended in PBS to be used as the culture medium. To measure the concentration, the same method as bacillus 
subtilis sp. was used (Cho et al., 2004). The initial injection concentrations E.Coli and bacillus subtilis sp. used in the 
experiment were maintained at 106~107 CFU/mL.  
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2.3. Application of disinfection model 

The disinfection model (Eq. 1) is used to quantitatively describe the inactivation of the microorganism in a 
disinfection process. The Chick-Watson model is generally used, but this study used the Delayed Chick-Watson 
model which often applied when there is a lag phase (Chick, 1908; Rennecker et al., 1999; Cho et al., 2006).  

               
𝑁

𝑁0
=  

0
exp(−𝑘 𝐶𝑇    − 𝐶𝑇𝑙𝑎𝑔            

𝑖𝑓  𝐶𝑇     ≤ 𝐶𝑇𝑙𝑎𝑔          

𝑖𝑓  𝐶𝑇     > 𝐶𝑇𝑙𝑎𝑔        
                   (1) 

Hear, N=concentration of bacillus subtilis sp. (cfu/mL) at time t, N0 = initial bacillus subtilis sp. concentration 

(cfu/mL),   𝐶 =  𝐶/𝑡𝑑𝑡
𝑡

0
 time average disinfectant concentration (mg/L), k = inactivation rate constant (L/mg∙min), 

𝐶𝑇𝑙𝑎𝑔       = X segment of the inactivation curve. In a UV disinfection, 𝐶  can be substituted by I, and the unit of k can be 

changed from L/mg∙min to cm
2
/mJ. 

3. Results and discussion 

3.1. Inactivation rate by UV LED 

Fig. 2 (a) shows the result of inactivation of E.Coli by UV LED at the conditions of 25°C temperature as well as 
pH 5.6 and pH 8.6. The test result shows that there was almost no difference of level of inactivation of E.Coli by pH. 
pH is generally known not to affect UV disinfection, and the same result was generated with UV LED (EPA, 2003; 
Montgomery, 1985). Observation of inactivation of E.Coli at the UV LED intensity of around 0.004 mW/ cm2 
showed that the IT (light intensity×inactivation time) value required to achieve 2 log inactivation of colon bacillus 
was 30 mJ/cm2. 

Fig. 2 (b) shows the result of inactivation of bacillus subtilis sp. by UV LED at the conditions of 25°C 
temperature as well as pH 5.6 and pH 8.6. Like the E.Coli, there was almost no difference of level of inactivation of 
bacillus subtilis sp by pH. As other literatures reported, the bacillus subtilis sp. had the lag period in UV LED 
disinfection also. Observation of inactivation of E.Coli at the UV LED intensity of around 4.3 μW/ cm2 for 4 hours 
until reaction time showed that the IT value required to achieve 2 log inactivation of E.Coli was 45 mJ/cm2. 

  
(a) E. coli (b) bacillus subtilis sp. 

Fig. 2.  Inactivation response of E. coli and bacillus subtilis sp. in deionized water for 260 nm UV LEDs (pH 5.6 and 
8.6). 

3.2. Comparison of inactivation rate of UV LED and UV 

Fig. 3 show the result of inactivation of colon bacillus and bacillus subtilis sp. by UV LED and UV at 25°C 
temperature and pH 7. As shown in Fig. 3 (a), the comparison of inactivation of E.Coli by UV LED and UV showed 
that the IT in UV LED was around 30 mJ/cm2 at 2 log inactivation while IT in UV was around 8 mJ/cm2 at 2 log 
inactivation. For E.Coli, the UV LED disinfection inactivated more slowly than UV. Although there was a difference 
of IT value, the test result was similar to other studies (Bowker et al., 2011). Since E.Coli can be greatly inactivated 
even with very small stimulation when it is damaged by disinfection, the great inactivation of E.Coli in UV LED was 
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also expected, but UV LED required more IT than UV. Fig. 3 (b) shows that the bacillus subtilis sp. was inactivated in 
the similar level in both UV LED and UV. It showed 2 log inactivation at the IT value of around 40 mJ/cm2. 
Moreover, it had a clear lag period up to the IT value of around 5 mJ/cm2 in both UV LED and UV. In the case of 
bacillus subtilis sp., the inactivation rate was equally high in both UV and UV LED at the same IT value. 

 

 
 

(a) E. coli (b) bacillus subtilis sp. 

Fig. 3. Inactivation response of E. coli and bacillus subtilis sp. in deionised water for by UV and UV LEDs (pH 7). 

3.3. Application of UV LED disinfection model 

Bacillus subtilis sp. had clear lag period in UV LED disinfection. As the bacillus subtilis sp. has the surface 
structure with strong resistance similar to the surface structure of cyst and oocyst, the damage on the surface 
structure may not affect the bacillus subtilis sp. at all, and it is not directly damaged by disinfection thus does not 
become inactivated. In the case of E.Coli, it can be inactivated even with small stimulation if it is damaged by 
disinfection. Therefore, different disinfection model must be applied to different microorganism. In the case of the 
bacillus subtilis sp., the modified delayed Chick-Watson model described its characteristics well and showed the 
similar result as other studies in UV LED disinfection (Jung et al., 2008; Cho et al., 2006). In UV LED disinfection, 
both E.Coli and bacillus subtilis sp. had the lag period, and the slope of lag period and inactivation were confirmed. 

4. Conclusion 

Following conclusions were obtained from the experiment of inactivation of E.Coli and bacillus subtilis sp. 
with UV LED and UV. 

1) At pH 7, the E.Coli had the inactivation of around 3 log at the IT value of around 18 mJ/cm2 in UV LED and UV 
disinfection, and the bacillus subtilis sp. had the inactivation of around 2 log at the IT value of around 40 mJ/cm2. 
The UV LED disinfection showed the similar inactivation rate as the UV disinfection.  

2) Review of applying UV LED to disinfect the drinking water indicated that the UV LED disinfection can substitute 
UV disinfection at the wavelength of 260 nm. 

3) For the bacillus subtilis sp., the modified delayed Chick-Watson model represented the UV LED disinfection well. 

4) It is expected that the levels of microorganism disinfection control and operation with UV LED can be 
determined by calculating the lag period and inactivation velocity values using a disinfection model. 
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